Erica Utsi, whose name is on my GPR and is shortly to publish a book recently became a TV star after appearing on a program about William Shakespeare's grave, and given we were a specialist audience rather than the TV viewing public, we got a slightly more in depth explanation of what it was all about, which was that Shakespeare's head may have been nicked due to a fashion for collecting the skulls of famous people.
Adam Booth treated us to some technology not often linked to the sort of geophysics we do, portable x-ray fluorescence, which can be used to identify the elements present in a sample, without having to a lab. His test site was the site of a WWII plane crash. Parts of the plane were visible on magnetometry, so what did the new tech turn up to go with that? In a transect across the site, a spike in copper and zinc from the remains of the plane leaching into the surrounding soil was visible. I've seen a similar talk where the technology was used in industrial sites, where it was suggested that it was useful for identifying prehistoric metal working, which may have been little more than a campfire affair. Always nice to see new tech explained.
My favourite subject, Roman roads, got a mention by Joep Orbons, who had thrown quite a few geophysics techniques (EM, Mag, ER, ERT and GPR) at a section of Roman road in Belgium. The sort of results he got were very familiar to me, with differences in preservation and different soil conditions giving different results of quite a small area, with some techniques (GPR, ER) performing better than others. Sometimes even massive features like this can be hard to find. Not content with one talk on Roman roads, that last talk was immediately followed by Michal Pisz taking about the Roman fort of Tibiscum in Romania with the Roman roads and surrounding vicus being surveyed and excavated.
Already mentioned in this blog, Chris Lockyear has been producing some amazing results on the Roman town of Verulanium here in the UK, with multiple buildings, roads and an aqueduct visible in surveys carried out using ER, Mag and GPR. The preservation is fantastic, and I really hope they find a lot more like it. If you haven't seen it already, check out their blog. Talking of big, pretty surveys, Tomasz Herbich spoke after Chris and has been researching ancient towns in Egypt, with predictably decent results from magnetometry due to the use of fired brick.
H Webber suggested a new avenue of research for archaeologists, using the vast geophysical surveys, such as EM, carried out for the benefit of farmers in modern day precision agriculture. Phosphates present in occupation material may highlight areas of occupation that the archaeological community were not previously aware of. Of course, the farmers would have to be approached in order to get this data, and someone in the audience pointed out that if all of this was explained to the farmers, some of them might deep plough the sites away in order to bring the free fertiliser to the surface.
Petra Schneidhofer gave us a talk about the state of geophysics in Norway and Denmark. Apparently, igneous geologies make our usual favourite, magnetometry, rather pointless, so GPR is commonly used instead. despite that, the natural variation over an area in GPR is quite extreme, and it can be quite difficult to pick out features. Thanks goodness for the boring sedimentary geologies in my part of the world.